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ABSTRACT
Defining outliers by their distance to neighboring examples
is a popular approach to finding unusual examples in a data
set. Recently, much work has been conducted with the goal
of finding fast algorithms for this task. We show that a sim-
ple nested loop algorithm that in the worst case is quadratic
can give near linear time performance when the data is in
random order and a simple pruning rule is used. We test
our algorithm on real high-dimensional data sets with mil-
lions of examples and show that the near linear scaling holds
over several orders of magnitude. Our average case analy-
sis suggests that much of the efficiency is because the time
to process non-outliers, which are the majority of examples,
does not depend on the size of the data set.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining

Keywords
Outliers, distance-based operations, anomaly detection, disk-
based algorithms

1. INTRODUCTION
Detecting outliers, examples in a database with unusual
properties, is an important data mining task. Recently re-
searchers have begun focusing on this problem and have at-
tempted to apply algorithms for finding outliers to tasks
such as fraud detection [7], identifying computer network in-
trusions [10, 18], data cleaning [21], and detecting employers
with poor injury histories[17].

Outlier detection has a long history in statistics [3, 13], but
has largely focussed on data that is univariate, and data
with a known (or parametric) distribution. These two lim-
itations have restricted the ability to apply these types of
methods to large real-world databases which typically have
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many different fields and have no easy way of character-
izing the multivariate distribution of examples. Other re-
searchers, beginning with the work by Knorr and Ng [16],
have taken a non-parametric approach and proposed using
an example’s distance to its nearest neighbors as a measure
of unusualness [2, 10, 17, 19].

Although distance is an effective non-parametric approach
to detecting outliers, the drawback is the amount of com-
putation time required. Straightforward algorithms, such as
those based on nested loops, typically require O(N 2) dis-
tance computations. This quadratic scaling means that it
will be very difficult to mine outliers as we tackle increas-
ingly larger data sets. This is a major problem for many
real databases where there are often millions of records.

Recently, researchers have presented many different algo-
rithms for efficiently finding distance-based outliers. These
approaches vary from spatial indexing trees to partitioning
of the feature space with clustering algorithms [19]. The
common goal is developing algorithms that scale to large
real data sets.

In this paper, we show that one can modify a simple al-
gorithm based on nested loops, which would normally have
quadratic scaling behavior, to yield near linear time mining
on real, large, and high-dimensional data sets. Specifically,
our contributions are:

• We show that an algorithm based on nested loops in
conjunction with randomization and a simple pruning
rule has near linear time performance on many large
real data sets. Previous work reported quadratic per-
formance for algorithms based on nested loops [16, 17,
19].

• We demonstrate that our algorithm scales to real data
sets with millions of examples and many features, both
continuous and discrete. To our knowledge we have
run our algorithm on the largest reported data sets
to date and obtained among the best scaling results
for distance-based outliers on real data sets. Other
work has reported algorithms with linear time mining
of distance-based outliers but only for low-dimensional
problems (less than 5) [16, 17] or have only tested the
scaling properties on simple synthetic domains.

• We analyze why our algorithm performs so well. The



result of an average case analysis suggests that under
certain conditions, the time to process non-outliers,
which are the large majority of points, does not depend
on the size of the data set.

The remainder of this paper is organized as follows. In the
next section, we review the notion of distance-based outliers
and present a simple nested loop algorithm that will be the
focus of this paper. In Section 3, we show that although
our simple algorithm has poor worst case scaling properties,
for many large, high-dimensional, real data sets the actual
performance is extremely good and is close to linear. In
Section 4, we analyze our algorithm and attempt to explain
the performance with an average case analysis. In Section 5,
we present examples of discovered outliers to give the readers
a qualitative feel for how the algorithm works on real data.
Finally, we conclude this paper by discussing limitations and
directions for future work.

2. DISTANCE-BASED OUTLIERS
A popular method of identifying outliers is by examining the
distance to an example’s nearest neighbors [2, 16, 17, 19]. In
this approach, one looks at the local neighborhood of points
for an example typically defined by the k nearest examples
(also known as neighbors). If the neighboring points are rel-
atively close, then the example is considered normal; if the
neighboring points are far away, then the example is consid-
ered unusual. The advantages of distance-based outliers are
that no explicit distribution needs to be defined to deter-
mine unusualness, and that it can be applied to any feature
space for which we can define a distance measure.

Given a distance measure on a feature space, there are many
different definitions of distance-based outliers. Three popu-
lar definitions are

1. Outliers are the examples for which there are fewer
than p other examples within distance d [16, 17].

2. Outliers are the top n examples whose distance to the
kth nearest neighbor is greatest [19].

3. Outliers are the top n examples whose average distance
to the k nearest neighbors is greatest [2, 10].

There are several minor differences between these defini-
tions. The first definition does not provide a ranking and
requires specifying a distance parameter d. Ramaswamy et
al. [19] argue that this parameter could be difficult to deter-
mine and may involve trial and error to guess an appropri-
ate value. The second definition only considers the distance
to the kth neighbor and ignores information about closer
points. Finally, the last definition accounts for the distance
to each neighbor but is slower to calculate than definition 1
or 2. However, all of these definitions are based on a near-
est neighbor density estimate [11] to determine the points
in low probability regions which are considered outliers.

Researchers have tried a variety of approaches to find these
outliers efficiently. The simplest are those using nested loops
[16, 17, 19]. In the basic version one compares each example

with every other example to determine its k nearest neigh-
bors. Given the neighbors for each example in the data set,
simply select the top n candidates according to the outlier
definition. This approach has quadratic complexity as we
must make all pairwise distance computations between ex-
amples.

Another method for finding outliers is to use a spatial in-
dexing structure such as a KD-tree [4], R-tree [12], or X-tree
[5] to find the nearest neighbors of each candidate point [16,
17, 19]. One queries the index structure for the closest k
points to each example, and as before one simply selects
the top candidates according to the outlier definition. For
low-dimensional data sets this approach can work extremely
well and potentially scales as N logN if the index tree can
find an example’s nearest neighbors in logN time. How-
ever, index structures break down as the dimensionality in-
creases. For example, Breunig et al. [8] used a variant of
the X-tree to do nearest neighbor search and found that the
index only worked well for low dimensions, less than 5, and
performance dramatically worsened for just 10 or 20 dimen-
sions. In fact, for high-dimensional data they recommended
sequential scanning over the index tree.

A few researchers have proposed partitioning the space into
regions and thus allowing faster determination of the near-
est neighbors. For each region, one stores summary statistics
such as the minimum bounding rectangle. During nearest
neighbor search, one compares the example to the bounding
rectangle to determine if it is possible for a nearest neighbor
to come from that region. If it is not possible, all points
in the region are eliminated as possible neighbors. Knorr
and Ng [16] partition the space into cells that are hyper-
rectangles. This yields a complexity linear in N but expo-
nential in the number of dimensions. They found that this
cell based approach outperformed a nested loop algorithm,
which is quadratic in N , only for four or fewer dimensions.
Others use a linear time clustering algorithm to partition
the data set [19, 10]. With this approach, Ramaswamy et al.
demonstrated much better performance compared with the
nested loop and indexing approaches on a low-dimensional
synthetic data set. However, their experiments did not test
how it would scale on larger and higher-dimensional data.

Finally, a few researchers have advocated projections to find
outliers. Aggrawal and Yu [1] suggest that because of the
curse of dimensionality one should focus on finding out-
liers in low-dimensional projections. Angiulli and Pizzuti
[2] project the data in the full feature space multiple times
onto the interval [0,1] with Hilbert space filling curves. Each
successive projection improves the estimate of an example’s
outlier score in the full-dimensional space. Their initial scal-
ing results are promising, and appear to be close to linear,
however they have reported results on only two synthetic
domains.

In this paper, we show that the simplest type of algorithm
based on nested loops in conjunction with randomization
and a pruning rule gives state-of-the-art performance. Ta-
ble 1 shows our variation of the nested loop algorithm in
more detail. The function distance computes the distance
between any two examples using, for example, Euclidean
distance for continuous features and Hamming distance for



Table 1: A simple algorithm for finding distance-based outliers. Lowercase variables represent scalar values
and uppercase variables represents sets.

Procedure: Find Outliers
Input: k, the number of nearest neighbors; n, the number of outliers to return; D, a set of examples in
random order.
Output: O, a set of outliers.
Let maxdist(x, Y ) return the maximum distance between x and an example in Y .
Let Closest(x, Y , k) return the k closest examples in Y to x.
begin
1. c ← 0 // set the cutoff for pruning to 0
2. O ← ∅ // initialize to the empty set
3. while B ← get-next-block(D) { // load a block of examples from D
4. Neighbors(b) ← ∅ for all b in B
5. for each d in D {
6. for each b in B, b 6= d {
7. if |Neighbors(b)| < k or distance(b,d) < maxdist(b,Neighbors(b)) {
8. Neighbors(b) ← Closest(b,Neighbors(b) ∪ d, k)
9. if score(Neighbors(b),b) < c {
10. remove b from B
11. } } } }
12. O ← Top(B ∪ O,n) // keep only the top n outliers
13. c ← min(score(o)) for all o in O // the cutoff is the score of the weakest outlier
14. }
15. return O
end

discrete features. The score function can be any monoton-
ically decreasing function of the nearest neighbor distances
such as the distance to the kth nearest neighbor, or the av-
erage distance to the k neighbors.

The main idea in our nested loop algorithm is that for each
example in D we keep track of the closest neighbors found
so far. When an example’s closest neighbors achieve a score
lower than the cutoff we remove the example because it can
no longer be an outlier. As we process more examples, the al-
gorithm finds more extreme outliers and the cutoff increases
along with pruning efficiency.

Note that we assume that the examples in the data set are in
random order. The examples can be put into random order
in linear time and constant main memory with a disk-based
algorithm. One repeatedly shuffles the data set into random
piles and then concatenates them in random order.

In the worst case, the performance of the algorithm is very
poor. Because of the nested loops, it could require O(N 2)
distance computations and O(N/blocksize ∗ N) data ac-
cesses.

3. EXPERIMENTS ON SCALING PERFOR-
MANCE

In this section, we examine the empirical performance of
the simple algorithm on several large real data sets. The
primary question we are interested in answering is “How
does the running time scale with the number of data points
for large data sets?” In addition, we are also interested
in understanding how the running time scales with k, the
number of nearest neighbors.

To test our algorithm we selected the five real and one syn-
thetic data sets summarized in Table 2. These data sets
span a range of problems and have very different types of
features. We describe each in more detail.

• Corel Histogram. Each example in this data set en-
codes the color histogram of an image in a collection of
photographs. The histogram has 32 bins correspond-
ing to eight levels of hue and four levels of saturation.

• Covertype. This data set represents the type of forest
coverings for 30 × 30 meter cells in the Rocky Moun-
tain region. For each cell, the data contains the cover
type, which is the dominant tree species, and addi-
tional attributes such as elevation, slope, and soil type.

• KDDCUP 1999. The KDDCUP data contains a set of
records that represent connections to a military com-
puter network where there have been multiple intru-
sions by unauthorized users. The raw binary TCP data
from the network has been processed into features such
as the connection duration, protocol type, number of
failed logins, and so forth.

• Census. This data set contains the responses from
the 1990 decennial Census in the United States. The
data has information on both households and individ-
uals. We divided the responses into two tables, one
that stores household records and another that stores
person records, and treated each table as its own data
set. Both the Household and Person data sets have
a variety of geographic, economic, and demographic
variables. Our data comes from the 5% State public
use microdata samples and we used the short variable



list [20]. In total, the 5% State sample contains about
5.5 million household and 12.5 million person records.
For our experiments we used a maximum of 5 million
records for each data set.

• Normal 30D. This is a synthetic data set generated
from a 30-dimensional normal distribution centered on
the origin with a covariance matrix equal to the iden-
tity matrix.

We obtained the data sets Corel Histogram, Covertype, and
KDDCup 1999 from the UCI KDD Archive [14] and the
census data from the IPUMS repository [20].

Table 2: Description of Data Sets
Data Set Features Continuous Examples
Corel Histogram 32 32 68,040
Covertype 55 10 581,012
KDDCup 1999 42 34 4,898,430
Household 1990 23 9 5,000,000
Person 1990 55 20 5,000,000
Normal 30D 30 30 1,000,000

We processed the data by normalizing all continuous vari-
ables to the range [0,1] and converting all categorical vari-
ables to an integer representation. We then randomized the
order of examples in the data sets. Randomizing a file can
be done in O(N) time and constant main memory with a
disk-based shuffling algorithm as follows: Sequentially pro-
cess each example in the data set by randomly placing it
into one of n different piles. Recombine the piles in random
order and repeat this process a fixed number of times.

We ran our experiments on a lightly loaded Pentium 4 com-
puter with a 1.5 GHz processor and 1GB RAM running
Linux. We report the wall clock time, the time a user would
have to wait for the output, in order to measure both CPU
and I/O time. The reported times do not include the time
needed for the initial randomization of the data set and rep-
resent one trial. Preliminary experiments indicated that al-
ternate randomizations did not have a major effect on the
running time. To measure scaling, we generated smaller
data sets by taking the first n samples of the randomized
set. Unless otherwise noted, we ran experiments to return
the top 30 anomalies with k = 5, a block size (|B|) of 1000
examples, and we used the average distance to the nearest
k neighbors as the score function.

Our implementation of the algorithm was written in C++
and compiled with gcc version 2.96 with the -O3 optimiza-
tion flag. We accessed examples in the data set sequentially
using standard iostream functions and we did not write
any special routines to perform caching. The total memory
footprint of the executing program was typically less than 3
MB.

Figure 1 shows the total time taken to mine outliers on the
six data sets as the number of examples varied. Note that
both the x and y axes are in a logarithmic scale. Each graph
shows three lines. The bottom line represents the theoreti-
cal time necessary to mine the data set given a linear algo-
rithm based on the running time for N = 1000. The middle

line shows the actual running times of our system. Finally,
the top line shows the theoretical time needed assuming a
quadratic algorithm based on scaling the running time for
N = 1000.

These results show that our simple algorithm gives extremely
good scaling performance that is near linear time. The scal-
ing properties hold for data sets with both continuous and
discrete features and the properties hold over several or-
ders of magnitude of increasing data set size. The plot-
ted points follow nearly straight lines on the log-log graphs
which means that the relationship between the y and x axis
variables is of the form y = axb or log y = log a + b log x,
where a and b are constants. Thus, the algorithm scales
with a polynomial complexity with an exponent equal to
the slope of the line. Table 3 presents for each data set the
slope of a regression line fit to the points in Figure 1. The
algorithm obtained a polynomial scaling complexity with
exponent varying from 1.13 to 1.32.

Table 3: Slope b of the regression fit relating log t =
log a + b logN (or t = aN b) where t is the total time
(CPU + I/O), N is the number of data points, and
a is a constant factor.

Data Set slope
Corel Histogram 1.13
Covertype 1.25
KDDCup 1999 1.13
Household 1990 1.32
Person 1990 1.16
Normal 30D 1.15

We also examined how the total running time scales with
k, the number of neighbors and the results for Normal 30D
and Person (with N = 1, 000, 000) are shown in Figure 2. In
these graphs, both the x and y axes are in a linear scale and
the measured times fall approximately on a straight line.
This suggests that the running time scales linearly with k.

4. ANALYSIS OF SCALING TIME
In this section, we explain with an average case analysis
why randomization in conjunction with pruning performs
well, especially when much of the past literature reported
that nested loop designs were extremely slow because of the
O(N2) distance computations. In particular, both Knorr
and Ng [16] and Ramaswamy et al. [19] implemented ver-
sions of the nested loop algorithm and reported quadratic
performance. However, Knorr and Ng did not use pruning
or randomization in their algorithm, and Ramaswamy et al.
only incorporated pruning.

Consider the number of distance computations needed to
process an example x. For now we assume that we are using
outlier definition 2, rather than definition 3 which we used
in our experiments, for ease of analysis. With this definition
an outlier is determined by the distance to its kth nearest
neighbor. In order to process x we compare it with examples
in the data set until we have either (1) found k neighbors
within the cutoff distance d, in which case we eliminate it as
it cannot be an outlier, or (2) we have compared it with all
N examples in the data set and failed to find k neighbors
within distance d, in which case it is classified as an outlier.
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Figure 1: Total time (CPU and I/O) taken to mine outliers as N , the number of points, increases. The top
and bottom lines represent the theoretical time taken by a quadratic and linear algorithm based on scaling
the observed time at N = 1000.
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Figure 2: Total time (CPU and I/O) taken to mine outliers as k increases for the data sets Normal 30D and
Person (with N = 1, 000, 000).

We can think of this problem as a set of independent Bernoulli
trials where we keep drawing instances until we have found
k successes (k examples within distance d) or we have ex-
hausted the data set. Let π(x) be the probability that a
randomly drawn example lies within distance d of point x,
let Y be a random variable representing the number of trials
until we have k successes, and let P (Y = y) be the probabil-
ity of obtaining the kth success on trial y. The probability
P (Y = y) follows a negative binomial distribution:

P (Y = y) =

(
y − 1

k − 1

)
π(x)k(1− π(x))y−k (1)

The number of expected samples we need to draw to process
one example x is:

E[Y ] =

N∑

y=k

P (Y = y) y +


1−

N∑

y=k

P (Y = y)


N (2)

The first term is the expectation of concluding a negative
binomial series within N trials. That is, as we are process-
ing an example, we keep drawing more examples until we
have seen k that are within distance d, at which point we
eliminate it because it cannot be an outlier. The second
term is the expected cost of failing to conclude the negative
binomial series within N trials, in which case we have ex-
amined all N data points because the example is an outlier
(less than k successes in N trials).

The expectation of a negative binomial series with an infinite
number of trials is,

∞∑

y=k

(
y − 1

k − 1

)
π(x)k(1− π(x))y−k y =

k

π(x)
(3)

This is greater than the first term in Equation 2. Combining
Equations 2 and 3 yields,

E[Y ] ≤ k

π(x)
+


1−

N∑

y=k

P (Y = y)


N (4)

Surprisingly, the first term which represents the number of
distance computations to eliminate non-outliers does not de-
pend on N . The second term, which represents the expected
cost of outliers (i.e, we must compare with everything in the
database and then conclude that nothing is close) does de-
pend on N, yielding an overall quadratic dependency to pro-
cess N examples in total. However, note that we typically
set the program parameters to return a small and possibly
fixed number of outliers. Thus the first term dominates and
we obtain near linear performance.

One assumption of this analysis is that the cutoff distance is
fixed. In practice, the cutoff distance varies during program
execution, and the final cutoff required to return the top n
outliers changes with N . However, the relationship between
cutoff value and percentage of the data set processed often
stays the same for different values of N . For example, Fig-
ure 3 shows the plot of cutoff value against the percentage
of the data set processed for different values of N .

In general, we expect that if the final cutoff distance in-
creases with larger N , then scaling will be better as π(x) is
larger and any randomly selected example is more likely to
be a success (neighbor). Conversely, if the cutoff distance
decreases, the scaling will be worse. In Figure 4 we plotted
the relationship between b, the empirical scaling factor, and
c50K/c5K , the ratio of the final cutoffs for N = 50000 and
N = 5000 for the six data sets used in the previous sec-
tion. We also plotted results for two additional data sets,
Uniform 3D and Mixed 3D, which we believed would be
respectively extremely difficult and easy. Uniform 3D is a
three-dimensional data set generated from a uniform distri-
bution between [-0.5,0.5] on each dimension. Mixed 3D is
a mixture of the uniform data set (99%) combined with a
Gaussian (1%) centered on the origin with covariance matrix
equal to the identity matrix.

The results indicate that for many data sets the cutoff ra-
tio is near or greater than 1. The only data set with an
extremely low cutoff ratio was Uniform3D. The graph also
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indicates that higher values of the cutoff ratio are associated
with better scaling scores (lower b). This supports our the-
ory that the primary factor determining the scaling is how
the cutoff changes as N increases.
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Figure 4: Empirical scaling factor b versus c50K/c5K ,
the ratio of cutoff scores for N = 50, 000 and N =
5, 000.

Figure 5 shows the running time plot for Uniform 3D and
Mixed 3D. We expected Uniform 3D to have extremely bad
scaling performance because it has no true outliers as the
probability density is constant across the entire space. In-
creasing N simply increases the density of points and drops
the cutoff score but does not reveal rare outliers. In contrast,
the results for Mixed3D were extremely good (b = 1.11). In
this data set, as we increase N we find more extreme outliers
from the Gaussian distribution and the cutoff distance in-
creases, thus improving pruning efficiency. Finally, we note

that data sets with a true uniform distribution are probably
rare in real domains.

5. OUTLIERS IN CENSUS DATA
Although the use of distance-based outliers is well estab-
lished, in this section, we show results from the census data
to give the readers a qualitative idea of the types of outliers
found when large data sets are mined. We also compare
the discovered outliers with examples flagged as unusual by
GritBot, a commercial program from RuleQuest Research
that was designed to find anomalies in data [21].

As we have limited space in this paper, we present only
selected results. The full list of outliers on the Household
and Person data sets for both our algorithm and GritBot
are available online1 and we encourage the readers to view
this list directly.

We emphasize that we are not claiming that one set of results
is better than another, but rather we feel these results show
that distance-based outlier detection finds unusual examples
of a qualitatively different nature than GritBot.

5.1 Distance-Based Outliers
We report selected results from running our outlier detection
algorithm on the full set of 5 million examples to return the
top 30 outliers with k = 5.

The top outlier in the household database is a single fam-
ily living in San Diego with 5 married couples, 5 mothers,
and 6 fathers. In the census data, a family is defined as a
group of persons related by blood, adoption, or marriage.
To be considered a mother or father, the person’s child or
children must be present in the household. The house had
a reported value of $85K and was mortgaged. The total re-
ported income of the household was approximately $86K for
the previous year.

Another outlier is a single-family rural farm household in
Florence, South Carolina. The house is owned free and clear
by a married couple with no children. This example is un-
usual because the value of the house is greater than $400K
(not including the land), and they reported a household in-
come of over $550K.

In the person data set one of the most extreme outliers was
a 90+ year old Black Male with Italian ancestry who does
not speak English, was enrolled in school2, has a Doctorate
degree, is employed as a baker, reported $110K income of
which $40K was from wages, $20K from business, $10K from
farming, $15K from welfare, and $20K from investments, has
a disability which limits but does not prevent work, was a
veteran of the U.S. armed forces, takes public transporta-
tion (ferry boat) to work, and immigrated to the U.S. 11-15
years ago but moved into his current dwelling 21-30 years
ago. Clearly, there are inconsistencies in this record and we
believe that this record represents an improperly completed
form.

1http://www.isle.org/∼sbay/papers/kdd03/
2Taking a course that a high school or college would accept
for credit would count under Census definitions.
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Figure 5: Total time (CPU and I/O) taken to mine outliers on the data sets Uniform 3D (b = 1.76) and Mixed
3D (b = 1.11).

A second outlier was a 46 year old, White, widowed female
living with 9 family members, two of which are her own chil-
dren. She has a disability that limits but does not prevent
her work as a bookkeeper or accounting clerk in the theater
and motion picture industry. She takes public transporta-
tion to work (bus or trolley) and it takes her longer than 99
minutes to go from home to work.

A third outlier was a 19 year old, White, female with Asian
ancestry and Mexican Hispanic origin with a disability that
limits but does not prevent work. She earned $123K in
business income, and $38K in retirement income (which may
include payments for disabilities), and is also enrolled in
school.

5.2 GritBot
GritBot finds records that have a surprising value on one
attribute given the values of other attributes. For example,
an outlier GritBot found on the Person data set was

case 481942:

raced = White (31831 cases, 98.94% ‘Black’)

ancest1d = African American

languagd = English

This means that 98.94% of people who have African Amer-
ican ancestry and who speak English, listed their race as
Black. Case 481942 is unusual because the race listed was
White.

We were not able to run GritBot on the household and per-
son data sets with five million examples because of memory
limitations. GritBot’s requirements exceeded the available
main memory as it loaded the entire data set and then allo-
cated additional memory during program execution. How-
ever, we were able to run GritBot on smaller data sets, and
specifically, we ran GritBot using the default settings on
approximately one million household records and one half

million person records.

Since GritBot and our algorithm compute two different sets
of outliers, precise comparisons of their running times are
not very meaningful. However, to give the reader a rough
idea of their performance, GritBot took approximately 70
minutes to process one million household records and 170
minutes to process one half million person records on a 600
MHz MIPS R14000 with 4 GB of memory. In comparison,
our algorithm took 87 and 18 minutes respectively to process
similar amounts of data on a 1.5 GHz Pentium 4 with 1 GB
of memory.3

In contrast to the results from distance-based outliers, Grit-
Bot found qualitatively different outliers. For example, on
the household data GritBot found a total of 266 anomalies.
These anomalies could be divided into roughly three groups:

• 228 records for which the household was listed as “Ru-
ral” although another field indicated that the house-
hold was urban (e.g., metro = In metro area – Central
city or citypop > 100000)

• 28 records for which the household was listed as “Ur-
ban” although another field indicated that the house-
hold was rural.

• 10 records with a total family income (ftotinc) greater
than the household income (hhincome). By definition
the household income should be greater than or equal
to the family income.

On the person data set, GritBot found a total of 1407 anoma-
lies. Unlike the household data, we could not place the ex-
amples into neat categories, but as before GritBot found
records with unusual combinations of attributes which in-
cluded

3The data sets were not exactly identical as they contained
different samples of Census records.



• people with unusual combinations of ancestry, His-
panic origin, and race. For example, GritBot found
records for people who are White and African-American,
Black and Italian, Black and Swedish, Black and Ger-
man, Black and Polish, Hispanic and Scotch-Irish.

• people who live in the same house where they lived 5
years ago, but also claimed to live in a different country
five years ago.

• people who don’t work, but have a place of work.

• a person whose ancestry is Mexican, but the language
spoken at home is Chinese.

• a 16 year old person who last worked more than 10
years ago.

• a 75 year old female veteran.

In general, GritBot tended to find examples in which a small
number of attributes made the example unusual. This is not
surprising as by default GritBot is set to examine four or
less conditions. However, GritBot often did not use all four
conditions and many outliers had only one or two terms.

6. LIMITATIONS AND FUTURE WORK
The main goal of our experimental study was to show that
our algorithm could scale to very large data sets. We showed
that on large, real, high-dimensional data sets the algorithm
had near linear scaling performance. However, the algorithm
depends on a number of assumptions, violations of which can
lead to poor performance.

First, our algorithm assumes that the data is in random
order. If the data is not in random order and is sorted then
the performance can be poor. For example, the Census data
as retrieved from the IPUMS repository [20] came with the
examples sorted by state. This can cause problems when
our algorithm considers a person from Wyoming. It will try
to eliminate it by finding the k nearest neighbors who are
also likely to be from Wyoming. To find these neighbors, the
algorithm will first scan all examples from states Alabama to
Wisconsin given the sequential manner in which it accesses
the data.

Second, our algorithm depends on the independence of ex-
amples. If examples are dependent in such a way that they
have similar values (and will likely be in the set of k near-
est neighbors) this can cause performance to be poor as the
algorithm may have to scan the entire data set to find the
dependent examples.

An extreme version of this problem can occur when the data
set originates from a flattened relational database For exam-
ple, if there are two tables X and Y , with each example in
X pointing to several different objects in Y , our flattened
database will have examples with form (X1, Y1), (X1, Y2),
(X1, Y3), (X2, Y4), . . . and so forth. As it is likely that the
closest neighbors of (X1, Y1) will be the examples (X1, Y2)
and (X1, Y3) our algorithm may have to scan the entire data
set until it finds them to obtain a low score.

However, our algorithm may still perform acceptably on
data sets with less severe violations. For example, the exam-
ples in the Person data set are not completely independent
as they are tied together by a common household.4 How-
ever, the performance on this data set (b = 1.16) was still
very good.

The third situation when our algorithm can perform poorly
occurs when the data does not contain outliers. For exam-
ple, our experiment with the examples drawn from a uniform
distribution had very poor scaling. However, we believe data
sets of this type are likely to be rare as most physical quan-
tities one can measure have distributions with tails.

We are interested in extending our work in this paper in
several ways. First, we are interested in speeding up the
algorithm even further. In Section 4 we showed that the
scaling performance depended on how the cutoff changes
as we process increasingly larger data sets. The algorithm
starts with a cutoff threshold of zero which increases as bet-
ter outliers are found. One modification is to start the al-
gorithm with a pre-defined cutoff threshold below which we
would consider any example to be uninteresting. In prelim-
inary experiments, a good initial guess could cut time to
a third. There may also be automatic ways to get a good
cutoff early. For example, we could first process the exam-
ples with a small data set to get an idea of the examples
that are most unusual. We then place these examples at the
beginning of the data file.

Another pressing limitation is that our work has only ad-
dressed finding outliers in the data sets that can be repre-
sented with a vector space or equivalently a single table in a
database. Many real data sources will be in the form of re-
lational databases with multiple tables that relate different
types of information to each other.

To address relational data, the simplest solution is to flat-
ten the database with join operators to form a single table.
While this is a convenient solution it loses much of the infor-
mation available. For instance, a flattened database cannot
easily represent households that have a variable number of
individuals. We also found that flattening a database could
create dependencies between examples and, as we explained
above, this can reduce the effectiveness of randomization
and pruning.

We are currently investigating how we can extend our al-
gorithm to handle relational data natively. There are two
research questions that arise. First, how does one define a
distance metric to compare objects which may have a vari-
able number of linked objects? There has been some work
on defining metrics for relational data [6, 9, 15]. The central
idea is to apply a recursive distance measure. That is, to
compare two objects one starts by comparing their features
directly, and then moves on to compare linked objects and
so on. Second, how does one efficiently retrieve an object
and its related objects to compare them in the context of
searching for outliers? Retrieving related objects may in-

4The Census microdata is based on cluster samples, i.e., the
samples are made of households or dwellings from which
there may be multiple individuals. Individuals from the
same household are not independent.



volve extracting records in a non-sequential order and this
can greatly slow database access.

Finally, there are many practical issues with algorithms for
mining distance-based outliers that we did not investigate
such as determining how to set algorithm parameters such
as k, the block size, the distance measure, and the score
function. Each of these parameters can have a large effect on
the discovered outliers (or running time for the block size).
In supervised classification tasks one can set these param-
eters to maximize predictive performance by using a hold
out set or cross-validation to estimate out of sample perfor-
mance. However, outlier detection is unsupervised and no
such training signal exists.

7. CONCLUSIONS
In our work applying outlier detection algorithms to large,
real databases a major limitation has been scaling the al-
gorithms to handle the volume of data. In this paper, we
addressed the scaling problem with an algorithm based on
randomization and pruning which finds outliers on many
real data sets in near linear time. This efficient scaling al-
lowed us to mine data sets with millions of examples and
many features.
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